揭秘20亿年前的核反应堆之谜(2)

2020-05-26 11:57 37349 移动版

  接连几周,法国原子能委员会(French Atomic Energy Commission,简写为CEA)的专家们都困惑不已。直到有人突然想起19年前的一个理论预言,大家才恍然大悟。1953年,美国加利福尼亚大学洛杉矶分校的乔治·W·韦瑟里尔(George W. Wetherill)和芝加哥大学的马克·G·英格拉姆(Mark G. Inghram)指出,一些铀矿矿脉可能曾经形成过天然的核裂变反应堆,这个观点很快便流行起来。其后不久,美国阿肯色大学的一位化学家黑田和夫(Paul K. Kuroda)计算出了铀矿自发产生“自持裂变反应”(self-sustained fission)的条件。所谓自持裂变反应,即可以自发维持下去的核裂变反应,是从一个偶然闯入的中子开始的:它会诱使一个铀235原子核发生分裂,裂变产生更多的中子,又会引发其他原子核继续分裂,如此循环下去,形成连锁反应。

  黑田和夫认为,自持裂变反应能够发生的第一个条件就是,铀矿矿脉的大小必须超过诱发裂变的中子在矿石中穿行的平均距离,也就是0.67米左右。这个条件可以保证,裂变的原子核释放的中子在逃离矿脉之前,就能被其他铀原子核吸收。

  第二个必要条件是,铀235必须足够丰富。今天,即使是储量最大、浓度最高的铀矿矿脉也无法成为一座天然核反应堆,因为铀235的浓度过低,甚至连1%都不到。不过这种同位素具有放射性,它的衰变速率比铀238快大约6倍,因此在久远的过去,这种更容易衰变的同位素所占的比例肯定高得多。例如,20亿年前奥克罗铀矿脉形成的时候,铀235所占的比例接近3%,与现在大多数核电站中使用的、人工提纯的浓缩铀燃料的浓度大致相当。

  第三个重要因素是,必须存在某种中子“慢化剂”(moderator),减慢铀原子核裂变时释放的中子的运动速度,从而使这些中子在诱使铀原子核分裂时,更加得心应手。最终,矿脉中不能出现大量的硼、锂或其他“毒素”,这些元素会吸收中子,因此可以令任何核裂变反应戛然而止。

  最终,研究人员在奥克罗和邻近的奥克罗班多地区的铀矿中,确定了16个相互分离的区域——20亿年前,那里的真实环境,居然与黑田和夫描绘的大致情况惊人地相似。尽管这些区域早在几十年前就被全部辨认出来,但是远古天然核反应堆运转过程的种种细节,直到最近才被我和同事彻底揭开。